
MATH 303 – Measures and Integration
Homework 4

Problem 1. Let (X,B, µ) be a measure space, and let (fn)n∈N be a sequence of measurable
functions fn : X → C. Suppose ∑

n∈N

∫
X
|fn| dµ < ∞.

Prove that
∑

n∈N fn converges a.e. to an integrable function f ∈ L1(µ), and∫
X
f dµ =

∑
n∈N

∫
X
fn dµ.

Solution: By Theorem 3.12,∫
X

∞∑
n=1

|fn| dµ =

∞∑
n=1

∫
X
|fn| dµ < ∞.

Hence, the function F =
∑∞

n=1 |fn| is integrable. In particular, F < ∞ a.e. by Proposition
3.20. Therefore, the series

∑∞
n=1 fn(x) converges (absolutely) for a.e. x ∈ X.

Let SN =
∑N

n=1 fn. Then SN is integrable, SN →
∑∞

n=1 fn a.e., and |SN | ≤ F . Hence, by
the dominated convergence theorem,

∑∞
n=1 fn is integrable and

∫
X

( ∞∑
n=1

fn

)
dµ = lim

N→∞

∫
X

N∑
n=1

fn dµ = lim
N→∞

N∑
n=1

∫
X
fn dµ =

∞∑
n=1

∫
X
fn dµ.

Problem 2. In this exercise, we will use measure-theoretic tools in order to carry out computations
with Riemann integrals. Assume for the purposes of this exercise that there is a measure λ on the
Borel subsets of R with the property: if f : [a, b] → R is a Riemann integrable function, then∫

[a,b]
f dλ =

∫ b

a
f(x) dx,

where the integral on the left is the measure-theoretic integral and the integral on the right is
the Riemann integral. (We will discuss multiple methods of constructing such a measure λ (the
Lebesgue measure) in future lectures.)

(a) Compute

lim
n→∞

∫ ∞

0

n sin
(
x
n

)
x(1 + x2)

dx.

(b) Show that for a > −1, ∫ 1

0

xa log x

1− x
dx = −

∞∑
k=1

1

(a+ k)2
.



Solution: (a) Let fn(x) =
n sin( x

n)
x(1+x2)

. Then for x > 0,

lim
n→∞

fn(x) = lim
n→∞

sin
(
x
n

)
x
n

· 1

1 + x2
=

1

1 + x2
.

Moreover, using the inequality | sin t| ≤ t for t > 0, we have a pointwise bound |fn(x)| ≤ 1
1+x2 .

Let f(x) = 1
1+x2 . By the fundamental theorem of calculus,∫
[0,∞)

f dλ =

∫ ∞

0

1

1 + x2
dx = lim

a→0+,b→∞
(arctan b− arctan a) =

π

2
< ∞,

so f is Lebesgue integrable. Hence, by the dominated convergence theorem,

lim
n→∞

∫ ∞

0

n sin
(
x
n

)
x(1 + x2)

dx = lim
n→∞

∫
[0,∞)

fn dλ =

∫
[0,∞)

lim
n→∞

fn dλ =

∫
[0,∞)

f dλ =
π

2
.

(b) Expand

1

1− x
=

∞∑
n=0

xn

for x ∈ (0, 1). Let
fn(x) = xa+n log x

so that
∞∑
n=0

fn(x) =
xa log x

1− x
.

Integrating by parts,∫ 1

0
fn(x) dx =

∫ 1

0
log x d

(
xa+n+1

a+ n+ 1

)
=

xa+n+1

a+ n+ 1
log x

∣∣∣∣1
0

−
∫ 1

0

xa+n+1

a+ n+ 1
d (log x)

= − 1

a+ n+ 1

∫ 1

0
xa+n dx

= − 1

(a+ n+ 1)2
.

Hence, noting that fn ≤ 0, we have

∞∑
n=0

∫ 1

0
|fn| dλ =

∞∑
n=0

1

(a+ n+ 1)2
≤ 1

a+ 1
+

∞∑
n=1

1

n2
< ∞.



Therefore, applying Problem 1,∫ 1

0

xa log x

1− x
dx =

∫ 1

0

∞∑
n=0

fn(x) dx =

∞∑
n=0

∫ 1

0
fn(x) dx =

∞∑
n=0

(
− 1

(a+ n+ 1)2

)
.

Substituting k = n+ 1 finishes the proof.


