MATH 303 – Measures and Integration Homework 4

Problem 1. Let (X,\mathcal{B},μ) be a measure space, and let $(f_n)_{n\in\mathbb{N}}$ be a sequence of measurable functions $f_n: X \to \mathbb{C}$. Suppose

$$\sum_{n\in\mathbb{N}} \int_X |f_n| \ d\mu < \infty.$$

Prove that $\sum_{n\in\mathbb{N}} f_n$ converges a.e. to an integrable function $f\in L^1(\mu)$, and

$$\int_X f \ d\mu = \sum_{n \in \mathbb{N}} \int_X f_n \ d\mu.$$

Solution: By Theorem 3.12,

$$\int_X \sum_{n=1}^{\infty} |f_n| \ d\mu = \sum_{n=1}^{\infty} \int_X |f_n| \ d\mu < \infty.$$

Hence, the function $F = \sum_{n=1}^{\infty} |f_n|$ is integrable. In particular, $F < \infty$ a.e. by Proposition 3.20. Therefore, the series $\sum_{n=1}^{\infty} f_n(x)$ converges (absolutely) for a.e. $x \in X$. Let $S_N = \sum_{n=1}^N f_n$. Then S_N is integrable, $S_N \to \sum_{n=1}^{\infty} f_n$ a.e., and $|S_N| \le F$. Hence, by the dominated convergence theorem, $\sum_{n=1}^{\infty} f_n$ is integrable and

$$\int_{X} \left(\sum_{n=1}^{\infty} f_{n} \right) d\mu = \lim_{N \to \infty} \int_{X} \sum_{n=1}^{N} f_{n} d\mu = \lim_{N \to \infty} \sum_{n=1}^{N} \int_{X} f_{n} d\mu = \sum_{n=1}^{\infty} \int_{X} f_{n} d\mu.$$

Problem 2. In this exercise, we will use measure-theoretic tools in order to carry out computations with Riemann integrals. Assume for the purposes of this exercise that there is a measure λ on the Borel subsets of \mathbb{R} with the property: if $f:[a,b]\to\mathbb{R}$ is a Riemann integrable function, then

$$\int_{[a,b]} f \ d\lambda = \int_a^b f(x) \ dx,$$

where the integral on the left is the measure-theoretic integral and the integral on the right is the Riemann integral. (We will discuss multiple methods of constructing such a measure λ (the Lebesque measure) in future lectures.)

(a) Compute

$$\lim_{n \to \infty} \int_0^\infty \frac{n \sin\left(\frac{x}{n}\right)}{x(1+x^2)} \ dx.$$

(b) Show that for a > -1,

$$\int_0^1 \frac{x^a \log x}{1 - x} \ dx = -\sum_{k=1}^\infty \frac{1}{(a+k)^2}.$$

Solution: (a) Let $f_n(x) = \frac{n \sin(\frac{x}{n})}{x(1+x^2)}$. Then for x > 0,

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\sin\left(\frac{x}{n}\right)}{\frac{x}{n}} \cdot \frac{1}{1+x^2} = \frac{1}{1+x^2}.$$

Moreover, using the inequality $|\sin t| \le t$ for t > 0, we have a pointwise bound $|f_n(x)| \le \frac{1}{1+x^2}$. Let $f(x) = \frac{1}{1+x^2}$. By the fundamental theorem of calculus,

$$\int_{[0,\infty)} f \ d\lambda = \int_0^\infty \frac{1}{1+x^2} \ dx = \lim_{a \to 0^+, b \to \infty} (\arctan b - \arctan a) = \frac{\pi}{2} < \infty,$$

so f is Lebesgue integrable. Hence, by the dominated convergence theorem,

$$\lim_{n \to \infty} \int_0^\infty \frac{n \sin\left(\frac{x}{n}\right)}{x(1+x^2)} \ dx = \lim_{n \to \infty} \int_{[0,\infty)} f_n \ d\lambda = \int_{[0,\infty)} \lim_{n \to \infty} f_n \ d\lambda = \int_{[0,\infty)} f \ d\lambda = \frac{\pi}{2}.$$

(b) Expand

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

for $x \in (0,1)$. Let

$$f_n(x) = x^{a+n} \log x$$

so that

$$\sum_{n=0}^{\infty} f_n(x) = \frac{x^a \log x}{1 - x}.$$

Integrating by parts,

$$\int_0^1 f_n(x) \ dx = \int_0^1 \log x \ d\left(\frac{x^{a+n+1}}{a+n+1}\right)$$

$$= \frac{x^{a+n+1}}{a+n+1} \log x \Big|_0^1 - \int_0^1 \frac{x^{a+n+1}}{a+n+1} \ d\left(\log x\right)$$

$$= -\frac{1}{a+n+1} \int_0^1 x^{a+n} \ dx$$

$$= -\frac{1}{(a+n+1)^2}.$$

Hence, noting that $f_n \leq 0$, we have

$$\sum_{n=0}^{\infty} \int_{0}^{1} |f_{n}| \ d\lambda = \sum_{n=0}^{\infty} \frac{1}{(a+n+1)^{2}} \le \frac{1}{a+1} + \sum_{n=1}^{\infty} \frac{1}{n^{2}} < \infty.$$

Therefore, applying Problem 1,

$$\int_0^1 \frac{x^a \log x}{1-x} \ dx = \int_0^1 \sum_{n=0}^\infty f_n(x) \ dx = \sum_{n=0}^\infty \int_0^1 f_n(x) \ dx = \sum_{n=0}^\infty \left(-\frac{1}{(a+n+1)^2} \right).$$

Substituting k = n + 1 finishes the proof.